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INTRODUCTION: Prostate cancer skeletal metastases are considered osteoblastic;
however, histopathological examination usually reveals underlying osteoclastic activity
(reviewed in 1). A key molecule required for induction of osteoclastic activity is
receptor activator of NFkB ligand (RANKL). RANKL activity is opposed by
osteoprotegerin (OPG). Thus, the balance of RANKL and OPG in the prostate cancer
tissue may regulate the overall phenotype of the metastatic lesion. We have determined
that prostate cancer cells express increasing levels of RANKL and decreasing levels of
OPG. Additionally, we have determined that androgen promotes OPG expression at the
transcriptional level. Thus, loss of androgen may reduce OPG expression and favor a
shift towards RANKL activity. Additionally, in a murine model, we have demonstrated
the ability to inhibit establishment of prostate cancer in bone by blocking RANKL-
induced osteoclastic activity using OPG. However, OPG can bind pro-apoptotic
molecules and block apoptosis of cancer cells indicating that it may not be useful for
clinical use (2). Instead, alternative methods to block RANKL activity may be more
clinically relevant. Based on our previous findings and those of others our hypothesisis
that an increase in the RANKL:OPG ratio contributes to the development of CaP skeletal
metastases. Accordingly, a corollary hypothesis is that restoring the RANKL:OPG axis
through inhibition of RANKL activity will diminish progression of skeletal metastases.
Accordingly, the specific aims of this project are to (1) identify the mechanisms through
which OPG expression is regulated in CaP cells and (2) determine if inhibition of
RANKL activity by methods other than OPG can block the establishment and
progression of CaP skeletal metastases in vivo.

BODY: Original Tasks:
Task 1. Identify the mechanisms through which OPG expression are regulated in CaP
cells (Months 1-24):

a. Determine OPG promoter activity in other CaP cells (Months 1-6).
i. Transfect cells with OPG promoter reporter and treat with

dihydrotestosterone.
b. Define cis-acting sites that are responsible for activation and androgen

response of the OPG promoter in CaP cells (Months 7-24).
i. Transfect cells with serially deleted OPG promoter-reporter vectors

(Months 7-10).
ii. Create and characterize activity of 50 bp deletion mutants based on

information from Task Ibi (Months 11-14).
iii. Clone into reporter vector and characterize activity of 50 bp fragment

(from Task lbii) (Months 15-19).
iv. Create and characterize activity of point-mutated 50 bp fragment

(Months 20-24).

Task 2. Determine if inhibition of RANKL activity by methods other than OPG can
block the establishment and progression of CaP skeletal metastases in vivo (Months 12-
36).
a. Evaluate effect of sRANK on prostate cancer establishment in bone (Months 12-17)
b. Evaluate effect of sRANK on prostate cancer progression in bone (Months 18-24)
c. Determine effect of anti-RANKL antibody on prostate cancer establishment in bone

(Months 25-30)
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d. Determine effect of anti-RANKL antibody on prostate cancer progression in bone
(Months 31-36).

Task I a i was completed in months 1-6 and was reported in FYI annual report.
Task I b i was completed in months 7-12 and was reported in FYI annual report.
In summary, those results showed that using five different lengths of the OPG promoter
that dihydrotestone (DHT) at 50 nM generally inhibits the longer length OPG promoters,
but at 100 nM it induces these OPG promoter in C4-2B prostate cancer cells (previous
report). This resulted in not providing clear and unequivocal evidence for the location of
an androgen responsive element in the OPG promoter. Without this information, it
would not be possible to continue the proposal as outlined. Thus, in FY2 (the subject of
this report) we chose to better identify the location of an androgen responsive component
of the OPG promoter prior to pursuing shorter (50 bp) deletions of the OPG promoter
(Task I b ii) and the subsequent Tasks (1 b iii and I b iv).

In FY2 we did the following:
The observation in FYI work that higher levels of DHT inhibited OPG promoter activity
was reminiscent of the biphasic response scene with PSA and DHT, which first induces
PSA, then inhibits PSA production. To further explore if this biphasic response could be
seen at more physiologic levels in the shorter promoter (OPG4), we did a dose response
study at closer to physiological levels (0.1 to 10) with the OPG4 promoter. We found
that DHT induced the OPG4 promoter in a dose responsive fashion. This suggested that
the OPG4 contains a response element that is driven down by androgen (Figure 4).
However, it could still be downstream of this fragment.

3-

2.5

2 -

0
E 1.5
0

C-
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0 5 10 15 20 25 30 35 40 45 50

DHT (nM)

Fig. 1. DHT induces OPG promoter activation in a dose-respondent fashion. C4-2B prostate
cancer cells were transfected with the OPG 4 promoter construct treated with the indicated level
of DHT. Twenty-four hours later total cell lysate was collected for measurement of luciferase.
*P<0.05 for the interaction of dosage and time; ANOVA and Fisher's protected least significant
difference for post-hoc analysis.
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To extend these studies and provide a better sense of the applicability of these findings to
other prostate cancer cell lines, we evaluated DHT's ability to induce the different lengths
of the OPG promoter in both the LNCaP can PC-3 cell line. PC-3 cells were stably
transfected with the human androgen receptor prior to this study as they are androgen
receptor negative. DHT at physiological levels (10 nM) induced the OPG promoter in
both cell lines (Fig. 3). In contrast to that observed in C4-2B cells in the FYI work, the
longer promoters in both LNCaP and PC-3 were induced by DHT.

LNCaP PC-3

10 10
Z, 9 , DHT9nM
=> 8 -DHT . 8

7-DHT1nM 7 -

o 0*
E 5 -

5  
*

3i -•24 24

0A 0
OPG1 OPG2 OPG3 OPG4 OPG5 OPG1 OPG2 OPG3 OPG4 0PG5

Construct Construct
Figure 2. DHT induces OPG activity in prostate cancer cells. Prostate cancer cells were
transfected with the OPG promoter constructs of different length and treated with the indicated
level of DHT. Twenty-four hours later total cell lysate was collected for measurement of
luciferase. *P<0.05 versus DHT 0 nM for each respective construct; ANOVA and Fisher's
protected least significant difference for post-hoc analysis.

In vitro studies do not necessarily reflect in vivo events. To provide evidence that DHT
effects the OPG promoter in vivo, we stably transfected the OPG4 promoter into C4-2B
cells and implanted these cells subcutaneously into orchiectomized SCID mice. Each
mouse was injected in 5 locations so that 5 tumors would develop. Tumors were allowed
to become established until they reached approximately 100 mm . At that time, mice
were injected with DHT (10 pl of a 40 pM solution intravenously via the tail vein) or
PBS vehicle every 24 hours and tumors were collected at the indicated times. Within 24
hours, DHT induced OPG promoter activity, which peaked at 72 hours and maintained
these levels for up to 96 hours, at which time the study was terminated (Fig. 3). In one
group, DHT was administered for the first 48 hours, and then treatment was stopped. In
those animals, the initial rise in DHT was observed and the OPG promoter activity
declined by 96 hours. 0.5

Figure 3. DHT activates the OPG 05 -0- None
promoter in vivo. See text for description -- -- DHn
of experiment. Tumors were excised at w" 0.4-
indicated times post-initiation of DHT .• -R-
treatment, tumors were homogenized to * 0.
obtain total protein lysate, which was o
normalized for protein content. The protein 2 Ž
was then subjected to luciferase assay. 0 0.2-
*P<0.01 for time*treatment interaction. 2

Repeated measures ANOVA. 0 0.1
0 0.a3-

0

0
0 24 48 72 96

6
Time post-initiation of DHT (hrs)



In all of these studies, OPG 4 was induced by DHT, but OPG 5, which is deleted from
OPG 4 downstream to OPG 5 is not induced by DHT. These findings now provide
strong evidence that the fragment between OPG 4 and OPG 5 contains an androgen
responsive element. Thus, the completion of all these studies in FY 2 (months 12-24)
provides strong evidence that we have identified the appropriate region of the OPG
promoter to target for further mutational analysis. However, our DOD project was
funded for only two years as opposed to three, thus we will continue to perform this
component of the study through other resources. In essence, we did not accomplish
Tasks I b ii through I b iii in FY2 in order to ensure we identified the appropriate region
of the OPG promoter for mutational analysis.

Task 2:
Task 2a and b which were supposed to be performed in FY2 months 12-24; were actually
completed early and reported in FYI report and published at that time. This work is
presented in the Cancer Research publication attached to the FYI report. Additionally,
we had extended these studies to delineate how RANKL expression is regulated in bone.
We identified that the RANKL promoter is activated in bone by transforming growth
factor-beta. This work was presented in the Prostate publication attached to the FYI
report. We were not funded for FY 3, but since we completed FY2 early in FYI, we set
out to pursue the next component. Thus, the next component was to perform Tasks 2 c
and 2 d. The original intent of these tasks was to repeat the FY2 experiments using an
antibody to RANKL; however, this antibody become unavailable to us (was supposed to
be supplied by Amgen and they could not provide it) and we could not complete Task 2 c
and 2 d. However, in FY2 we continued to explore the in vivo ability of inhibiting
RANKL activation on prostate cancer cell growth in bone. Our goal is to determine if
sRANK-Fc could act as an adjuvant to docetaxel chemotherapy of prostate cancer in
bone.

To attack this goal, our first task was to determine the minimum and maximum effective
doses of docetaxel on prostate cancer cells. Accordingly, mice were injected
subcutaneously and within the tibia with C4-2B cells and docetaxel or vehicle treatment
was initiated. Tumor volumes were measured weekly and radiographs of the tibia were
taken at the end of the study. Docetaxel at all doses effectively decreased subcutaneous
tumor growth (Fig. 4) and decreased establishment of tumors in the tibia (Table 1) and
(Fig. 5). 3000

Figure 4. Docetaxel

inhibits establishment of 2500 Docetaxel (mg/kg)
C4-2B subcutaneous
tumors. E 2000 -

0i --n--2.5
Data are shown as 0>-1500 - 5 Tmean+SEM. Repeated 1500

0
measures ANOVA E1 10
(p=0.03) and *P<0.01 vs. 20
all docetaxel treatments. 500 -
(Fisher's protected least

Table 1. significant difference). 0

scored rauiograpnicany oaseu on Me a 0 2 4 6 8 10

Treatment week

7



Docetaxel (mg/kg)
Tumor score 0 2.5 5 10 20

2 3 1 4 10
+ 1 1 2 5 0

++ 3 2 6 0 0
2 3 0 0 0

Figure 5. Docetaxel decreases
establishment of C4-2B tumors in
bone. C4-2B cells were injected
intratibially at which time docetaxel
administration at the indicated dose
was initiated. After 10 weeks, mice
were sacrificed and tibiae
radiographed. 

Arrowhead 
indicates 

m
osteolytic area and loss of cortex.
Arrow indicates no boney changes
(note intact cortex).

0 2.5 5 10 20

Docetaxel (mg/kg)

These experiments were repeated using the LuCaP 35 human prostate cancer xenograft
model. The results were similar to the above experiment with C4-2B cells. Briefly,
Docetaxel decreased tumor growth at subcutaneous sites (data not shown) and inhibited
establishment of tumor in the tibia (Table 2).

Table 2. Effect of docetaxel on establishment of LuCaP 35 intratibial tumors. Tumors
were scored radiographically based on the area of bone affected by tumor.

Docetaxel (mg/kg)
Tumor score 0 2.5 5 10 20

1 1 5 7 8
+ 1 4 3 1 2

++ 4 1 0 2 0
1 2 2 0 0

Taken together, these data indicate that docetaxel is highly effective at blocking
establishment of prostate cancer in bone. Also, they indicate that in order to test
inhibition of RANKL using sRANK-Fc as an adjuvant to docetaxel, we should use 5
mg/kg, which has some efficacy, but is suboptimal and will thus allow us to determine if
sRANK-Fc has an additive or synergistic effect with docetaxel. These experiments are
currently ongoing, but are not completed in FY2 as the dose experiments were performed
in FY2.
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KEY RESEARCH ACCOMPLISHMENTS:

FYI
* Demonstration that DHT regulates OPG in a biphasic fashion.
* Demonstration that sRANK-Fc can inhibition prostate cancer growth in bone but

not soft tissue.
* Demonstration of RANKL gene promoter activity in vivo.
* Demonstrate that TGF-beta, a factor produce upon resorption of bone, induces the

RANKL promoter
Demonstrate that tumor volume measured in vivo by bioluminescence imaging
correlates with tumor volume measured by PSA.

FY2
"* Identified that the OPG promoter segment between OPG 4 and OPG 5 contains an

androgen response element, both in vitro and in vivo.
"* Demonstrated that docetaxel is highly effective against the establishment of

intratibial prostate cancer growth
* Demonstrated that docetaxel prevents subcutaneous tumor growth
* Identified a suboptimal, but effective dose of docetaxel to use in combination with

sRANK-Fc.

REPORTABLE OUTCOMES:
FYI

1. Zhang J, Dai J, Yao Z, Lu Y, Dougall W, Keller ET. Soluble RANK-Fc
diminishes prostate cancer progression in bone. Cancer Res. 63:7883-7890, 2003.

2. Zhang J, Lu Y, Kitazawa R, Kitazawa S, Dai J, Zhao X, Yao Z, Pienta KJ, Keller
ET. Role of TGF-P3 in Prostate Cancer Skeletal Metastases: In Vivo Real-time
Imaging of TGF-j3-induced RANK Ligand Transcriptional Activation in Prostate
Cancer. Prostate. 59:360-369, 2004.

FY2
3. Keller ET. Mechanisms of bone resorption in prostate cancer skeletal metastases.

In: F. Columbus, ed. Progress in Prostate Cancer Research. Nova Publishers.
2004.

4. Keller ET, Brown J. Prostate cancer bone metastases promote both osteolytic
and osteoblastic activity. J Cell Biochem. 91:718-729, 2004.

CONCLUSIONS:
RANKL promotes prostate cancer growth in bone. Blocking RANKL is an effective
strategy to diminish progression of prostate cancer growth in bone (3). Most likely it
works through inhibiting osteoclastogenesis as the inhibitory effect is specific to tumor
growing in bone as opposed to subcutaneous tumor.

Additionally, the bone environment may promote RANKL expression from tumor cells
through release of factors that increase RANKL expression such as TGF-beta (4). This
suggests there is a vicious cycle present that allows for increased bone resorption, release
of prostate cancer-active growth factors, which in turn stimulates prostate cancer cells to
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continue growth and effect bone remodeling (5). This may be tempered in the bone
environment by production of OPG which is regulated by androgens. Specifically, it
appears that DHT increases OPG expression through activation of the promoter. Thus,
when men with advance prostate cancer are treated using androgen deprivation, then
androgen levels will decline, which will result in decreased OPG allowing for unopposed
RANKL activity and thus favor bone osteolysis (6).
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Cancer, 5: 21-28, 2005.
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APPENDICES:
Keller ET. Mechanisms of bone resorption in prostate cancer skeletal metastases. In: F. Columbus,
ed. Progress in Prostate Cancer Research. Nova Publishers. 2004.

Keller ET, Brown J. Prostate cancer bone metastases promote both osteolytic and osteoblastic
activity. J Cell Biochem. 91:718-729, 2004.
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Chapter V

Mechanisms of Bone Resorption in
Prostate Cancer Skeletal Metastases

Evan T. Keller*
Departments of Urology and Pathology, University of Michigan,

Ann Arbor, Michigan, USA

Abstract

Prostate cancer (CaP) frequently metastasizes to bone resulting in osteoblastic
lesions with underlying osteoclast-mediated bone resorption. Skeletal metastases are
often associated with significant complications including severe bone pain, impaired
mobility, pathological fracture, and spinal cord compression and therefore demand
advanced therapeutic interventions. Current therapeutic approaches for treatment of CaP
include hormonal therapy, pharmacological management of bone pain, radiotherapy for
pain and spinal cord compression, various chemotherapy regimens, and the use of
bisphosphonates to inhibit increased osteoclast activity in bone metastases; however,
there have only been limited advances in preventing or diminishing these bone lesions.
Progress in defining osteoclast biology has led towards defining putative therapeutic
targets to attack tumor-induced osteolysis.

Several factors have been found to be important in tumor-induced osteoclast activity
and thus may serve as therapeutic targets. These include receptor activator of nuclear
factor kappa B ligand, parathyroid hormone-related protein, interleukin-6, matrix
metalloproteinases, endothelin-1 (ET-I), and cathepsin K (cat K). In this chapter, we
review the roles of these factors in prostate cancer metastasis to bone and therapeutic
methods to target these factors.

Correspondence: Evan T. Keller, Room 5304, Comprehensive Cancer Geriatric Center, University of
Michigan, 1500 E. Medical Center Dr., Ann Arbor, MI 48109-0940. Tel: 734-615-0280; Fax: 734-936-
9220; Email: etkeller@umich.edu
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Introduction

As prostate cancer progress, it typically metastasizes to bone. In addition to inducing

osteoblastic activity (i.e., induce mineralization in the skeletal metastatic site), prostate

skeletal metastases also have an underlying osteoclastic component. The prostate cancer-

induced bone resorption causes pain and pathologic bone fractures. Continuing advances on

osteoclast biology provide clues to understanding how osteoclasts contribute to tumor-

mediated bone resorption. Due to the importance of osteoclast activity in skeletal metastases,
there is a lot of research efforts toward defining clinical inhibitors of osteoclast activity. In

this review, we will summarize the biology of osteoclasts and pro-osteoclastic factors
produced by prostate cancer.

Osteoclast Biology

Osteoclasts are derived from the colony-forming unit granulocyte-macrophage (CFU-
GM) hematopoietic precursor cells. The CFU-GM undergoes a defined progression of
maturation steps that ultimately result in fusion of the precursor cells into mature osteoclasts
(Fig. 1). Several factors promote osteoclastogenesis including growth factors and cytokines.

Both colony stimulating factor (CSF-1) and interleukins-1 and -6 (IL-1 and IL-6) expand the

osteoclast precursor pool. TNF-alpha promotes conversion of the promonocyte to a
committed osteoclast precursor [1].

~4W

CFU-GM Promonocyte Pre-OC OC Activated OC

Figure 1. Cellular pathway for osteoclastogenesis. CFU-GM, colony forming unit-granulocyte-macrophage;

OC, osteoclast.

Although several factors promote osteoclastogenesis, one factor that is required for

production of mature osteoclasts is receptor activator of nuclear factor kappa B ligand
(RANKL). A member of the tumor necrosis factor family, RANKL is initially expressed by

bone marrow stromal cells, osteoblasts, and activated-T cells. RANKL is most commonly a

membrane anchored molecule; however, a small fraction of RANKL is released through
proteolytic cleavage from the cell surface as a soluble 245 amino acid homotrimeric molecule

(sRANKL) [2]. Both soluble and membrane bound RANKL promote osteoclast formation

and activation by binding to RANK on the osteoclast precursor membrane (Fig. 2) [2-6] that
has the characteristics of a monocytes [7]. RANKL binding to RANK induces NFkappaB and

Fos activation [8, 9]. Several lines of evidence demonstrate RANKL's importance in
osteoclastogenesis. For example, RANKL has been shown to induce osteoclastogenesis in

vitro from CFU-GM [10]. Mice that are genetically engineered to overexpress RANKL or
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RANK are severely osteoporotic [11]. Additionally, mice that have had their RANKL [12] or

RANK [13] gene deleted have no osteoclasts and are osteopetrotic.

- OSTEOCLAST

OSTEOBLAST PROMONOCYTE

OPG

Figure 2. RANKL and OPG regulation of osteoclastogenesis.

In addition to RANKL and RANK, another key modulator of osteoclastogenesis is

osteoprotegerin (OPG) (also known as osteoclastogenesis inhibitory factor-OCIF) [14, 15].

OPG serves as a decoy receptor that binds RANKL and thus blocks its ability to bind to

RANK and induce osteoclastogenesis. In contrast to RANKL and RANK, whose expression
is mainly restricted at low levels to the skeletal and immune systems, OPG is expressed in a

variety of tissues, such as liver, lung, heart, kidney, stomach, intestines, skin, and calvaria in
mice and lung, heart, kidney, and placenta in human [14, 16-21]. In bone, OPG is mainly
produced by osteoblastic lineage cells and its expression increases as the cells become more

differentiated [19, 22, 23]. Several factors including, 1,25-dihydroxyvitamin D3, IL-I-P3,

TNF-cQ, and BMP-2 induce OPG mRNA expression in human osteoblast cell lines [19].

Administration of recombinant OPG to normal rodents resulted in increased bone mass [14,
17] and completely prevented ovariectomy-induced bone loss without apparent adverse
skeletal and extraskeletal side effects [14]. Additionally, a single subcutaneous injection of

OPG is effective in rapidly and profoundly reducing bone turnover for a sustained period in

women [24]. In fact, based on this activity, the balance ratio of RANKL to OPG appears to be

very important in controlling the overall activity (i.e., lysis vs. no lysis) that will be observed
[11,23, 25, 26].

Receptor Activator of Nuclear
Factor Kappa B Ligand (RANKL)

As described above, RANKL is a key osteoclastogenic factor. Several lines of evidence
support the role of RANKL in prostate cancer-mediated osteolysis. Although a bone

metastatic prostate cancer cell line has been shown to express OPG [27], that same line

overexpresses RANKL [28]. Additionally, in normal prostate, OPG protein was detected in
luminal epithelial and stromal cells (5% to 65% and 15% to 70%, respectively) and RANKL

immunoreactivity was observed in 15% to 50% of basal epithelial cells, 40% to 90% of
luminal epithelial cells, and 70% to 100% of stromal cells [29]. OPG was not detected in 8 of
10 primary CaP specimens, but RANKL was heterogeneously expressed in 10 of 11 CaP
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specimens [29]. Importantly, the percentage of tumor cells expressing OPG and RANKL was

significantly increased in all CaP bone metastases compared with nonosseous metastases or

primary CaP. Serum OPG levels are elevated in patients with advanced prostate cancer

compared to less advanced prostate cancer [30]. However, RANKL levels were not measured

in that study, thus one cannot determine if the ratio of RANKL:OPG was altered in these

patients. It is possible that RANKL is only expressed locally at the skeletal metastatic site

and therefore not detectable in the serum. Regardless, taken together, these observations
suggest that the RANKL:OPG axis may play an important role in prostate cancer bone

metastases. Further support for this possibility was demonstrated by the observation that

administration of OPG prevented establishment of prostate cancer cells in the bones of SCID
mice, although it had no effect on establishment of subcutaneous tumors in the same mice

[28].

Parathyroid Hormone Related Protein (PTHrP)

PTHrP, a protein with limited homology to parathyroid hormone (PTH), was originally
identified as a tumor-derived factor responsible for humoral hypercalcemia of malignancy

(HHM). PTH and PTHrP bind to the same receptor (the PTH-1 receptor) and evoke the same

biological activity due to similarities in their steric configurations at the region of 25-34
amino acids. Patients with solid tumors and hypercalcemia have increased serum PTHrP in

80% of the cases, emphasizing the impact of this peptide to increase bone resorption and
renal tubular resorption of calcium [31]. Subsequent to its characterization in HHM, PTHrP

was found to be produced by many normal tissues including, epithelium, lactating mammary
gland, and cartilage where it has an autocrine, paracrine or intracrine role [31].

PTHrP is an attractive candidate for influencing prostate carcinoma growth. PTHrP is
produced by normal prostate epithelial cells, from which prostate carcinoma arises and
PTHrP is found in the seminal fluid [32, 33]. PTHrP has been immunohistochemically

identified in prostate carcinoma tissue in patients with clinically localized disease [34], is

found in higher levels in prostate intraepithelial neoplasia than in normal prostate epithelium,
is found in higher levels in prostate carcinoma than in benign prostatic hyperplasia [35, 36],

and is found in human metastatic lesions in bone [37]. However, in some studies, expression
of PTHrP receptor in prostate cancer appears to be more consistent then expression of PTHrP
itself [38]. Overexpression of ras oncogene in immortalized prostate epithelial cells has been

shown to promote PTHrP expression [39]. This may account for the increased expression of
PTHrP as the cells progress to a malignant phenotype.

There is evidence that PTHrP can regulate malignant tumor growth in an autocrine
manner in human renal cell carcinoma [40], enhance breast cancer metastasis to bone [41,
42], and act as an autocrine growth factor for prostate carcinoma cells in vitro [32] although it

does not effect proliferation of normal prostate cells [43]. Recent evidence indicates that
expression of nuclear-targeted PTHrP can protect prostate and other cells from apoptosis [37,
44], bind RNA [45], and act as a mitogen [46, 47]. PTHrP production by primary prostatic

tumors is associated with increased tumor size and rate of growth in an animal model [37]
suggesting that PTHrP acts in an autocrine or intracrine mechanism to promote tumor growth.
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In contrast, in this same model and in an intracardiac injection model of prostate carcinoma,

PTHrP was not associated with an increase in metastatic potential [37, 48]. This suggests that
PTHrP is not important in the process of metastasis to bone but once in the bone

microenvironment where target cells with receptors are present (osteoblasts), it may play a

critical role in the bone response to prostate carcinoma. Of particular interest to prostate

carcinoma, PSA has been shown to cleave PTHrP leading to an inactivation of the PTHrP-

stimulation of cAMP which is a key pathway for the actions of PTHrP in bone [49].

Overexpression of PTHrP in prostate cancer cells has been shown to induce osteolytic lesions

in the bone of rats [50] although the level of expression may not directly correlate with the

degree of osteolysis [48]. All these data suggest that PTHrP has a critical role in the local
bone microenvironment of metastatic prostate carcinoma; but what this precise role is has yet

to be determined.

Interleukin-6 (IL-6)

IL-6 belongs to the "interleukin-6 type cytokine" family that also includes leukemia
inhibitory factor, interleukin- 11, ciliary neurotrophic factor, cardiotrophin-1 and oncostatin
M [51]. Many physiologic functions are attributed to IL-6 including promotion of antibody
production from B lymphocytes, modulation of hepatic acute phase reactant synthesis,

promotion of osteoclastic-mediated bone resorption, and induction of thrombopoiesis [52].
IL-6 mediates its activity through the IL-6 receptor complex, which is composed of two
components; an 80 Kd transmembrane receptor (IL-6Rp80, IL-6R, ac-subunit) that

specifically binds IL-6, but has no signaling capability and a 130 Kd membrane glycoprotein
(gpl30) that mediates signal transduction following IL-6R binding [53]. In addition to the

transmembrane IL-6R, a soluble form of IL-6R (sIL-6R) exists that is produced by either
proteolytic cleavage of the 80 kDa subunit [54, 55] or differential splicing of mRNA [56].

Although the slL-6R does not posses a transmembrane component, it can still bind to IL-6

and the ligand bound sIL-6R*IL-6 complex activates signal transduction and biological

responses through membrane-bound gp130 [57].
Multiple studies have demonstrated that IL-6 is elevated in the sera of patients with

metastatic prostate cancer [58-60]. Adler et al. [58] demonstrated that serum levels of IL-6

and transforming growth factor-Pl are elevated in patients with metastatic prostate cancer,
and that these levels correlate with tumor burden as assessed by serum PSA or clinically

evident metastases. In a similar fashion, Drachenberg et al. [61] reported elevated serum IL-6
levels in men with hormone-refractory prostate cancer compared to normal controls, benign

prostatic hyperplasia, prostatitis, and localized or recurrent disease. In an animal model,
prostate tumor cells injected next to human bones implanted in the limb of mice demonstrated

IL-6 expression [62]. In addition to IL-6, the IL-6R has been identified in human normal
prostate and prostate carcinoma tissue [63, 64].

The secretion of IL-6 by prostate cancer cells in the bone microenvironment may impact

bone remodeling [reviewed in 65, 66]. IL-6 promotes osteoclastogenesis [67-69] most likely

through increasing osteoclastogenic precursors. IL-6-mediated osteoclastogenesis is directly

related to the level of gp130 present on the precursor cells [70]. It appears that IL-6-mediated
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osteoclastogenesis is independent of promoting RANKL expression [71]. However, IL-6 has

been shown to potentiate PTHrP-induced osteoclastogenesis [72, 731. Administration of anti-

IL-6 antibody has been shown to diminish growth of subcutaneously injected prostate cancer

cells in nude mice, thus demonstrating the potential utility of this compound in clinical

prostate cancer [74]. These results strongly suggest that IL-6 may serve as a therapeutic target

for the osteolytic component of prostate cancer skeletal metastases.

Direct Mediators of Bone Resorption

Cathepsins

Once activated, osteoclasts resorb bone through secretion of a combination of.proteases

to resorb the non-mineralized matrix and acid to dissolve the hydroxyapatitic mineral [75].
Proteases that are important mediators of osteoclastic activity include cathepsins and

metalloproteinases. Cathepsins can cleave bone proteins such as Type I collagen,
osteopontin, and osteonectin [76]. Various cathepsins exist such as cathepsin B, K, D and L.
Each cathepsin produces a different pattern of collagen and non-collagen protein degradation

[77]. Overexpression of cathepsin K in the mouse results in accelerated bone turnover [78];
whereas knockout of cathepsin K results in retarded bone matrix degradation and
osteopetrosis [79]. Prostate cancer cells themselves make cathepsin K [80]. In the case of

breast cancer, there are conflicting reports, some say that breast cancer cells express
cathepsin K [81]; whereas other reports say they do not [82]although other cathepsins, such

as cathepsin D are present [83]. The presence of cathepsin D in metastatic breast cancer cells
[84] or in the serum of men with prostate cancer [85] indicates an aggressive tumor. Several
novel classes of cathepsin inhibitors have been designed and may provide novel therapeutic
agents to target bone resorption [86-88]. For example, CLIK-148, a cathepsin L inhibitor, has

been shown in animal models to prevent local tumor-induced bone invasion and also inhibit
growth of tumor in bone at sites distant from the tumor inoculation [86].

Matrix Metalloproteinases (MMPs)

Matrix metalloproteinases (MMPs), a family of enzymes whose primary function is to
degrade the extracellular matrix, play a role in bone remodeling. This activity occurs in the

absence of osteoclasts [89] suggesting that MMPs have a direct resorptive effect. Several
have the ability to degrade the non-mineralized matrix of bone including MMP-1, MMP-9
and MMP-13, which are collagenases. Other MMPs such as stromelysin (MMP-3) activate

MMP-1. Through their proteolytic activity MMPs contribute to metastatic invasion, including
destruction of bone [90].

Prostate carcinomas and their cell lines express a large number of MMPs [91-98]. Levels
of MMP-9 secretion in primary prostate cancer cultures increased with Gleason histological
grade [93]. Active MMP-9 species were detected in 15 cultures (31%) of primary prostate

cancer tissues. The presence of the mineralized matrix has been shown to induce MMP-9
expression from prostate carcinoma cells [99].
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The initial functional data that suggested prostate carcinoma bone metastasis modulate
bone remodeling through MMPs was provided by in vitro studies. Specifically, blocking
MMP activity with 1,10-phenanthroline, a MMP inhibitor, diminished bone matrix
degradation induced by PC-3 cells in vitro [100, 101]. Matrilysin (MMP-7) has been shown
to be upregulated in DU-145 prostate cancer cells and can enhance their invasive ability.
Monoclonal antibody targeting the cytokine interleukin-6 (IL-6) has been shown to increase
promatrilyisn expression in DU-145 cultures [102]. This suggests that IL-6, which is
increased in prostate cancer [reviewed in 103], enhances prostate cancer invasion through
production of MMP-7.

The importance of MMPs in bone metastasis has been further confirmed in vivo. An
MMP inhibitor, batimistat, has been shown to inhibit development bone resorption in vitro
and in vivo in murine models of breast [104] and prostate carcinoma [105]. The mechanism
through which prostate carcinoma-produced MMPs induce bone resorption is not clear;
however, it appears to involve induction of osteoclastogenesis as inhibition of MMPs reduced
the number of osteoclasts associated with prostate tumor growth in human bone implants in
mice [105]. Additionally, the bisphosphonate alendronate blocked MMP production from
PC-3 cells [106]. This was associated with diminished establishment of bone metastasis in
mice injected with PC-3 tumors [89].

Acid Secretion

In addition to the proteases, acid is secreted from osteoclasts to resorb the mineralized
matrix. Acid is believed to be secreted through vacuolar H(+)-ATPase-dependent pumps
present on the osteoclasts ruffled membranes [107]. Several hormones regulate acid
secretion, including parathyroid hormone, which increases acid secretion and calcitonin,
which decreases acid secretion. Carbonic anhydrase II appears to be an important mediator of
acid production because acetazolamide, a carbonic anhydrase inhibitor-based diuretic, can
block bone resorption [108]. Another diuretic, indapamide, increased osteoblast proliferation
and decreased bone resorption, at least in part, by decreasing osteoclast differentiation via a
direct effect on hematopoietic precursors in vitro [109]. These findings suggest that targeting
osteoclast-derived activity, as in addition to targeting osteoclast production or survival, may
provide therapeutic avenues to diminish tumor-induced bone resorption.

Conclusions

Prostate cancer skeletal metastases promote osteolysis through several mechanisms that
include both activation of osteoclast-mediated bone resorption and direct resorption on non-
mineralized bone matrix (Fig. 3). Delineating the mechanisms that promote prostate cancer
skeletal metastasis and the interactions between metastatic prostate cancer cells and bones
should lead to development of therapies that will diminish or prevent these events. Our
current understanding of the biology of prostate cancer skeletal metastases has led to
identification of several putative targets and therapies aimed at these targets, some of which
are currently in clinical trials at the time of this writing. Continued research into the biology
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of prostate cancer skeletal metastases should enable development of improved therapeutic
regimens to diminish this painful aspect of prostate cancer.

Prostate

IL-6 Cancer

PTHrP MMPs ¾
RANKL, Cathepsins

BONE Collagen

Figure 3. Mechanisms of prostate cancer metastases-mediated osteolysis.
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Prostate Cancer Bone Metastases Promote Both
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Abstract Advanced prostate cancer is frequently accompanied by the development of metastasis to bone. In the
past, prostate cancer bone metastases were characterized as being osteoblastic (i.e., increasing bone density) based on
radiographs. However, emerging evidence suggests that development of prostate cancer bone metastases requires
osteoclastic activity in addition to osteoblastic activity. The complexities of how prostate tumor cells influence bone
remodeling are just beginning to be elucidated. Prostate cancer cells produce a variety of pro-osteoblastic factors that
promote bone mineralization. For example, both bone morphogenetic proteins and endothelin-1 have well recognized
pro-osteoblastic activities and are produced by prostate cancer cells. In addition to factors that enhance bone
mineralization prostate cancer cells produced factors that promote osteoclast activity. Perhaps the most critical pro-
osteoclastogenic factor produced by prostate cancer cells is receptor activator of NFKB ligand (RANKL), which has been
shown to be required for the development of osteoclasts. Blocking RANKL results in inhibiting prostate cancer-induced
osteoclastogenesis and inhibits development and progression of prostate tumor growth in bone. These findings suggest that
targeting osteoclast activity may be of therapeutic benefit. However, it remains to be defined how prostate cancer cells
synchronize the combination of osteoclastic and osteoblastic activity. We propose that as the bone microenvironment is
changed by the developing cancer, this in turn influences the prostate cancer cells' balance between pro-osteoclastic and
pro-osteoblastic activity. Accordingly, the determination of how the prostate cancer cells and bone microenvironment
crosstalk are important to elucidate how prostate cancer cells modulate bone remodeling. J. Cell. Biochem. 91: 718-729,
2004. © 2003 Wiley-Liss, Inc.
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Bone is the most frequent site of prostate mobility, pathological fracture, spinal cord
carcinoma metastasis with skeletal metastases compression, and symptomatic hypercalcemia
identified at autopsy in up to 90% of patients [Galasko, 1986; Coleman, 1997; Moul and
dying from prostate carcinoma [Abrams et al., Lipo, 1999]. Despite advances in the diagnosis
1950; Rana et al., 1993; Bubendorf et al., and management of prostate carcinoma,
2000]. Skeletal metastasis results in significant advanced disease with skeletal metastasis
complications including bone pain, impaired remains incurable. Current therapeutic modal-

ities are mostly palliative, and include hormo-
nal therapy, pharmacological management of
bone pain, radiotherapy for pain, and spinal
cord compression [Szostak and Kyprianou,
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developed to provide the basis for creating rates [Charhon et al., 1983; Clarke et al., 1993].
strategies to prevent or diminish their occur- The histological findings are consistent with
rence and associated complications, clinical evidence that demonstrates increased

There are many challenges that encompass systemic markers of both bone production in
determining the mechanisms that contribute to prostate carcinoma patients [Maeda et al., 1997;
the selective development of CaP in bone [Lange Demers et al., 2000]. However, evidence that
and Vessella, 1998; Rosol, 2000]. These include osteoclast activity occurs is also found, which
mechanisms of homing to bone and tumor cell suggests that prostate carcinoma induces bone
attachment at the bone endothelial site. How- production through an overall increase in bone
ever, once in the bone, CaP tumors have patho- remodeling. In the case of prostate carcinoma, it
biology that appears to be somewhat unique to appears the induction of osteoblast-mediated
cancer skeletal metastases. Specifically, CaP mineralization eventually outweighs the incre-
skeletal metastases are most often radiogra- ase in osteoclast resorption resulting in an over-
phically characterized as osteoblastic (i.e., all formation of osteoblastic lesions. Although it
increased mineral density at the site of the would seem that the increased bone production
lesion) as opposed to osteolytic. Other tumors, would not decrease the bones mechanical pro-
such as breast cancer, can form osteoblastic perties (i.e., its strength) it actually weakens
lesions; however, these occur less frequently the bone for the following reasons; mature,
[Munk et al., 1997; Yamashita et al., 2000]. In healthy bone is formed of lamellar bone, which
spite of the radiographic osteoblastic appear- consists of collagen bundles that are organized
ance it is clear from histological evidence that in a tightly packed linear fashion resulting in
CaP metastases form a heterogeneous mixture optimum bone strength. In contrast, prostate
of osteolytic and osteoblastic lesions although carcinoma induces production of woven bone,
osteoblastic lesions are predominant [Urwin which is composed of loosely packed, randomly
et al., 1985; Percival et al., 1987; Berruti et al., oriented collagen bundles that produce bone
1996; Vinholes et al., 1996; Roudier et al., 2000]. with suboptimal strength [Blomme et al., 1999;
Recent evidence shows that osteoblastic metas- Rosol, 2000]. The combination of inferior bone
tases form on trabecular bone at sites ofprevious production and underlying osteolysis leads to a
osteoclastic resorption, and that such resorp- predisposition to fracture.
tion may be required for subsequent osteoblas- The mechanisms through which prostate
tic bone formation [Carlin and Andriole, 2000; carcinoma cells promote bone mineralization
Zhang et al., 2001]. These findings suggest that remain poorly understood. However, prostate
CaP induces bone production through an overall carcinoma cells produce a variety of factors that
increase in bone remodeling, which in the non- have direct or indirect osteogenic properties
pathologic state is a balance between osteoclast (Table I) (reviewed in Goltzman et al., 1992;
resorption of bone, followed by osteoblast-medi- Yoneda, 1998; Boyce et al., 1999b; Deftos, 2000).
ated replacement of resorbed bone (reviwed in Some of these factors, such as bone morphoge-
Boyce et al., 1999a; Karsenty, 2000; Parfitt, netic proteins (BMP) [Harris et al., 1994;
2000). The mechanisms through which CaP Autzen et al., 1998; Hullinger et al., 2000] and
cells promote bone mineralization or bone enodothlin-1 (ET-1) [Nelson et al., 1995] may
resorption remain poorly understood. Dissect- directly stimulate differentiation of osteoblast
ing these mechanisms should help identify precursors to mature mineral-producing osteo-
molecular targets for therapeutic approaches blasts [Kimura et al., 1992] or induce osteoblast
to prevent the damaging effects of CaP on the protein production [Hullinger et al., 2000].
skeleton and their associated complications. Other factors such as parathyroid hormone-

related protein (PTHrP) may work through
inhibition of osteoblast apoptosis) [Karaplis

E PRO-OSTE ASTECNARE and Vautour, 1997; Cornish et al., 1999].
Additionally, there are proteins that may work

Histomorphometric evidence indicates that indirectly to enhance bone production, such as
sites of prostate carcinoma bone metastases the serine proteases, prostate specific antigen
often have microscopic evidence of increased (PSA), and urinary plasminogen activator
bone production including increased osteoid (uPA), which can activate latent forms of osteo-
surface, osteoid volume, and mineralization genic proteins, such as transforming growth
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TABLE I. Osteogenic Factors Produced by Cancer Cells

Factor Reference

Bone morphogenetic proteins (BMP) [Bentley et al., 1992; Hullinger et al., 2000]
Endothelin-1 (ET-1) [Nelson et al., 1995; Nelson and Carducci, 2000]
Insulin-like growth factors (IGF) [Perkel et al., 1990; Pirtskhalaishvili and Nelson, 2000]
Interleukin-1 and -6 [Taguchi et al., 1998; Le Brun et al., 1999]
Osteoprotegerin (OPG) [Guise, 2000; Honore et al., 2000]
Parathyroid hormone-related peptide (PTHrP) [Karaplis and Vautour, 1997; Cornish et al., 1999]
Transforming growth factor-[(TFG-P) [Killian et al., 1993]
Urinary plasminogen activator (urokinase) [Goltzman et al., 2000]

factor-P (TFG-J) [Killian et al., 1993; Rabbani 2, -4, and -7 by binding to them [Zimmerman
et al., 1997]. Finally, some molecules, such as et al., 1996; Merino et al., 1999; Abe et al., 2000].
osteoprotegerin (OPG) [Simonet et al., 1997; Furthermore, the BMPs themselves regulate
Guise, 2000; Honore et al., 2000; Lee et al., 2003] their own inhibitors in an apparent negative
and ET-1 (in a dual role with its osteoblast- feedback mechanism [Nifuji and Noda, 1999;
stimulating activity) [Chiao et al., 2000] can Nifuji et al., 1999].
enhance osteosclerosis through inhibiting Many in vitro studies have demonstrated that
osteoclastogenesis. Other tumor types, such as BMPs induce osteogenic differentiation includ-
osteosarcoma, are also known to produce a ing the ability of BMP-7 (also called osteogenic
variety of osteoblastic factors [Wlosarski and protein-i; OP-1) to induce osteogenic differen-
Reddi, 1987; Raval et al., 1996; Laitinen et al., tiation of newborn rat calvarial cells and
1998]. With such a large number of factors, it is rat osteosarcoma cells [Asahina et al., 1993;
difficult to determine which the key factor is, Maliakal et al., 1994; Li et al., 1996]. The BMP's
and most likely several of these osteogenic osteogenic properties appear to be specific to the
factors work in concert to produce maximal differentiation stage of the target cells. Specifi-
bone production. We will highlight two of the cally, BMPs can induce uncommitted stem cells
factors, BMP and endothelin-1 (ET-1), for which [Katagiri et al., 1990; Li et al., 1996; Yamaguchi
there is currently the most evidence for a role in et al., 1996] and myoblasts [Katagiri et al., 1997]
prostate cancer-induced osteosclerosis. to express osteoblast parameters such as alka-

BMP are members of the TFG-P superfamily. line phosphatase or osteocalcin expression
More than 30 BMPs have been identified to date [Ducy et al., 2000; Karsenty, 2000]; whereas,
[Ducy and Karsenty, 2000]. While originally BMPs do not stimulate mature osteoblasts or
discovered because of their ability to induced fibroblasts [Knutsen et al., 1993; Yamaguchi
new bone formation, BMPs are now recognized et al., 1996; Kim et al., 1997; Groeneveld and
to perform many functions, particularly in the Burger, 2000] to increase expression of these
role of development, such as apoptosis, differ- proteins. Examination of genetically modified
entiation, proliferation, and morphogenesis mice provides further evidence of the impor-
(reviewed in Hogan, 1996; Reddi, 1997; Hall tance of BMP in bone development. The bmp7
and Miyake, 2000). BMPs are synthesized as homozygous null condition in mice is a postnatal
large precursor molecules that undergo proteo- lethal mutation and is associated with, in
lytic cleavage to release the mature protein, addition to renal and ocular abnormalities,
which form active hetero- or homodimers retarded skeletal ossification [Jena et al., 1997].
[Wozney, 1992; Suzuki et al., 1997]. BMPs bind In contrast, bmp6 null mice are viable and
to receptors (BMPR-IA and -IB) and a BMP fertile, and the skeletal elements of newborn
type II receptor (BMPR-II), which induces and adult mutants are indistinguishable from
Smad phosphorylation [Wrana, 2000] resulting wildtype [Solloway et al., 1998]. However, care-
in modulation of gene regulation. Target genes ful examination of skeletogenesis in late gesta-
of BMPs include osteoblast proteins such as tion embryos reveals a consistent delay in
OPG [Wan et al., 2001] and the osteoblast- ossification strictly confined to the developing
specific transcription factor Cbfa-1 [Tsuji et al., sternum. Finally, mice with mutations of the
1998; Gori et al., 1999]. Several proteins that bmp5 gene have skeletal abnormalities and
antagonize BMP action have been identified. inefficient fracture repair [Kingsley et al.,
For example, noggin and gremlin inhibit BMP- 1992]. Thus, taken together, these data provide
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evidence that BMPs are important regulators of BMPs, there have been several reports on
the osteogenesis. Thus, dysregulation of their prostate carcinoma expression of BMPR, it
expression in the bone microenvironment would appears that as prostate carcinoma progress,
most likely impact bone remodeling, the cells down-regulate their own expression of

A few studies have examined the expression BMPRs [Ide et al., 1997a; Kim et al., 2000],
of BMPs in normal and neoplastic prostate which may be a protective mechanism as it has
tissues. Using Northern analysis, Harris et al. been demonstrated that BMP-2 can inhibit
[1994] examined for BMP-2, 3, 4, and 6 mRNA prostate carcinoma cell proliferation [Ide et al.,
expression in human normal prostate and pro- 1997b]. Taken together, these observations
state carcinoma cell lines. They found that nor- demonstrate that prostate carcinoma cells pro-
mal human prostate predominantly expressed duce increasing levels of BMPs as they progress
BMP-4. The androgen-dependent non-meta- to a more aggressive phenotype and suggest
static LNCaP human prostate carcinoma cell that the upregulation of BMP expression in
line produced very low to undetectable levels of prostate carcinoma cells localized in the bone is
BMPs. Whereas, the aggressive androgen-inde- a critical component of the mechanism of
pendent PC-3 cell line expressed very high development of osteoblastic lesions at prostate
levels of BMP-3 and slightly lower levels of carcinoma metastatic sites.
BMP-2, -4, and -6 compared to normal cells, but Endothelins
much higher than LNCaP cells. In support of
these results, Weber et al. [1998], using PCR Osteoblastic metastases occur in most pros-
analysis, identified 16 (73%) of 22 prostate tate cancers and frequently in other common
carcinoma samples were positive for BMP-7 malignancies, such as breast cancer [Guise and
mRNA compared to eight (57%) of 14 normal Mundy, 1998]. Many tumor-associated factors
prostate tissue samples. In another PCR based have been proposed as mediators of the dis-
analysis, Bentley et al. [1992], found that organized new bone formation at sites of meta-
several BMPs were expressed in both benign stases, including insulin-like growth factors
and malignant prostate tissue and in the PC3 (IGF)-I and -2, transforming growth factor
and DU145 prostate carcinoma cell lines. (TGF) P, prostate-specific antigen (PSA), uroki-
BMP-6 expression was detected in the prostate nase-type plasminogen activator (UPA), fibro-
tissue of over 50% of patients with clinically blast growth factors (FGF)-I and -2, BMPs,
defined metastatic prostate adenocarcinoma, and endothelin-1 (ET-1) [Achbarou et al., 1994;
but was not detected in non-metastatic or Thalmann et al., 1994; Nelson et al., 1995, 1996,
benign prostate samples. In another study 1999; Gingrich et al., 1996].
focused on BMP-6 mRNA and protein expres- Accumulating evidence implicate ET-1 in the
sion, Barnes et al. [1995] observed that BMP-6 pathogenesis of osteoblastic metastases. Yana-
was produced by normal and neoplastic human gisawa et al. [1988] originally purified ET-1
prostate (radical prostatectomy specimens and from endothelial cells. ET-1 is a potent vasocon-
human carcinoma cell lines DU145 and PC3). strictor, belongingto a family of three 21-amino-
However, BMP-6 mRNA and protein expression acid peptides, with a variety of functions [La
was higher in prostate carcinoma as compared and Reid, 1995]. The endothelins mediate their
with adjacent normal prostate, with higher- effects through endothelin A (ETA) and endo-
grade tumors (Gleason score of 6 or more) thelin B (ETB) receptors. ETA receptors bind
having greater BMP-6 immunostaining than ET-1 with ten times greater affinity than ET-3
the lower-grade tumors (Gleason score of 4 or while the B receptor binds all three endothelins
less). These results were consistent with a later with equal affinity.
study by Hamdy et al. [1997], who reported that ET-1 has multiple effects on bone cells. It
BMP-6 mRNA expression was detected exclu- stimulates mitogenesis in osteoblasts, which
sively in malignant epithelial cells in 20 of 21 express both ETA and ETB receptors [Takuwa
patients (95%) with metastases, in 2 of 11 et al., 1990; Stern et al., 1995]. ET-1 decreases
patients (18%) with localized cancer, and unde- osteoclastic bone resorption and osteoclast
tectable in eight benign samples. Futhermore, motility [Alam et al., 1992]. Immunohistochem-
BMP-7 mRNA levels were found to be higher in istry of bone detected ET-1 in osteocytes,
prostate cancer skeletal metastases than in osteoblasts, and osteoclasts [Sasaki and Hong,
bone itself [Masuda et al., 2003]. In addition to 1993a,b].
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Nelson et al. [1995] suggested the link These effects were inhibited by nonselective and
between osteoblastic metastases, prostate can- ETA, but not ETB, receptor antagonists. Mice
cer, and ET-1. They demonstrated that plasma inoculated with ZR-75-1 and treated with oral
ET-1 concentrations were significantly higher ABT-627, a selective ETA receptor antagonist
in men with advanced, hormone-refractory (2 or 20 mg/kg/day), had significantly fewer
prostate cancer with bone metastases compared bone metastases compared with untreated ZR-
to men with organ-confined prostate cancer or 75-1-mice. Bone histomorphometry revealed
normal controls [Nelson et al., 1995]. However, that the untreated ZR-75-1-mice had greater
ET-1 concentrations were not correlated to total bone area as well as new bone area
tumor burden in bone or to serum prostate- compared with ABT-627-treated ZR-75-1-mice
specific antigen (PSA) concentrations. at either dose. Tumor burden in bone was

Prostatic epithelium produces ET-1, and significantly less in ABT-627-treated mice. In
high-affinity receptors are present throughout contrast, there was no effect of ABT-627 on
the prostate gland [Nelson et al., 1995, 1996, osteolytic bone metastases caused by ET-1-
1999]. A majority of prostate cancers at primary negative breast cancer, MDA-MB-231. ETA
as well as at metastatic sites express ET-1. and ETB expression, determined by RT-PCR,
Exogenous ET-1 increases the proliferation of revealed that ZR-75-1 expressed neither ETA
prostate cancer as well as augmenting the nor ETB while MDA-MB-231 expressed both.
mitogenic effects of IGF-1, -2; platelet-derived There was no effect of ABT-627 on (1) in vitro
growth factor (PDGF); epidermal growth factor growth of ZR-75-1 or MDA-MB-231 or (2) in vivo
(EGF) and FGF-2 on prostate cancer cells. growth of ZR-75-1 or MDA-MB-231 mammary
These effects are mediated via ETA receptors fat pad tumors. These data indicate that the
[Nelson et al., 1996]. ETB receptor expression effects of ABT-627 to inhibit osteoblastic metas-
was decreased in cancerous compared to normal tases are not direct effects on these tumor cells,
prostate and was low in the prostate cancer cell but rather directed against the osteoblastic
lines PC3, DU 145, and LNCaP. response of tumor-produced ET-1. Collectively

Breast cancers also express ET-1 and are the these data suggest that tumor-produced ET-1
next most common tumor to cause osteoblastic likely has a major role in the establishment of
metastases. Human breast cancer cells MCF-7, osteoblastic bone metastases by stimulating
T47-D, and MDA-MB-231 have been shown to osteoblast proliferation and new bone forma-
express the endothelin-processing enzyme tion. In terms of prostate cancer, atrasentan, an
necessary to convert preproET-1 to ET-1 [Patel antagonist of ET-1 receptor A, partially re-
and Schrey, 1995; Schrey and Patel, 1995; versed primary murine osteoblast proliferation
Yorimitsu et al., 1995; Patel et al., 1997]. Thus, induced by prostate cancer cells [Fizazi et al.,
substantial data implicate ET-1 in the patho- 2003], suggesting that ET-1 may play a role
genesis of osteoblastic metastases due to pros- in vivo. Blockade of the ETA receptor may be
tate and breast cancers. However, a direct useful for prevention and the treatment of
demonstration of a causal role for ET-1 in bone osteoblastic bone metastases due to breast or
metastasis has not previously been reported. prostate cancer.
Questions remain about whether ET-1 has In addition to production of pro-osteoblastic
effects on bone formation in vivo, about the factors, prostate cancer cells themselves gain an
specificity of its effects, and about whether the osteoblast-like phenotype. The initial evidence
increase in ET-1 observed in patients with for this possibility was shown in a study that
prostate cancer represents a causative factor, demonstrated C4-2B prostate cancer cells

The bulk of evidence for a pro-osteoblastic mineralized in vitro [Lin et al., 2001]. Further-
metastatic effect of ET-1 has been derived from more, increased nuclear expression of the bone-
breast cancer skeletal metastases. Recent evi- specific transcription factor Cbfal (also known
dence indicates that breast cancer lines (ZR-75- as Runx2, CCD, AML3, CCD 1, OSF2) was found
1, MCF-7, and T47D) all cause osteoblastic in the C4-2B cells and blocking Cbfal activity
metastases in female nude mice and produce decreased the ability of C4-2B cells to miner-
ET-1 [Yin et al., 2000]. Conditioned media from alize in vitro. Additionally, mRNA and protein
these cell lines, as well as exogenous ET-1, of the osteoblast-active transcription factor
stimulated osteoblast proliferation and new Cbfal were detected in prostate cancer tissues
bone formation in cultures of mouse calvariae. and cell lines [Brubaker et al., 2003]. Finally, a
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specific Cbfal: OSE2 (an osteoblast-specific cis- rank -/- mice that developed severely hyper-
acting element present in the osteocalcin pro- dense bones due to an absence of osteoclasts
moter) complex could be formed with PC-3 [Dougall et al., 1999; Kong et al., 1999].
nuclear extracts. These data suggest that Furthermore, administration of soluble extra-
prostate cancer cells may promote osteosclero- cellular RANKL to mice resulted in hypercalce-
sis directly, although direct evidence of this has mia and reduced bone volume, concomitant
not been provided to date. with a doubling of osteoclast size [Lacey et al.,

In summary, a variety of factors may promote 1998]. The soluble glycoprotein OPG regulates
the osteoblastic nature of prostate cancer bone excessive bone resorption by acting as a soluble
metastases. Most likely no individual factor is decoy receptor for RANKL [Simonet et al.,
responsible for prostate cancer-induced osteo- 1997], and therefore neutralizes its interaction
sclerosis, but rather several factors work in with RANK, abrogating osteoclast formation,
concert to induce both osteoblastogenesis and activation, and survival in vitro [Yasuda et al.,
osteoblast activity. 1998a,b] and in vivo [Lacey et al., 1998]. The

crucial role of OPG in bone remodeling was
demonstrated using transgenic opg -/- mice,

OF PROSTATE CANCER which showed uncontrolled bone resorption and

severe osteoporosis [Mizuno et al., 1998]. These
In healthy adults, the regulated destruction studies suggest that the balance between

(resorption or lysis) of normal lamellar bone RANKL and OPG determines the extent of bone
matrix by large multinucleated osteoclasts is resorption, in that a relative decrease in OPG
tightly coupled to the consequent formation of results in excessive resorption and a relative
new bone by osteoblasts, such that lysis and increase in OPG inhibits resorption.
formation are balanced (reviewed in Manolagas Recent work has shown that the expression of
and Jilka, 1995). However, in prostate cancer OPG, RANKL, and/or RANK is dysregulated in
bone metastasis, bone lysis is stimulated at sites a number of cancers in bone, including osteo-
of tumor growth and excess woven bone is clastoma [Atkins et al., 2000] and prostate
synthesized [Clarke et al., 1991]. This results cancer [Brown et al., 2001], suggesting that
in a general increase in both bone turnover and these proteins may be involved in tumor-
volume, although woven bone has less collagen mediated bone destruction. Breast cancer cell
and therefore less tensile strength than normal lines were shown to express OPG and RANK but
and is more susceptible to fracture. Evidence not RANKL [Thomas et al., 1999]. However, co-
suggests that lysis is a prerequisite for the culture with hematopoietic bone marrow cells
establishment of tumor cells in bone [Roland, and osteoblasts resulted in a net increase in
1958; Nielsen et al., 1991], therefore under- RANKL expression, suggesting an indirect
standing the regulation of bone resorption may mechanism through which localized bone lysis
suggest mechanisms through which tumors can may occur in breast cancer bone metastasis, by
develop in bone and may indicate novel ther- activation of osteoclast precursors [Thomas
apeutic targets. et al., 1999]. This was supported using a murine

In normal bone, osteoblastic cells regulate in vitro model in which interactions between
osteoclastogenesis and osteoclast activity by mouse breast cancer cells and bone marrow cells
interacting with mononuclear hematopoietic similarly resulted in a net increase in RANKL
osteoclast precursors [Roodman, 1996]. The activity [Chikatsu et al., 2000]. The cancer-
molecular mediators of this interaction were stromal interaction is also critical in multiple
shown to be the osteoblast-expressed proteins, myeloma, where co-culture produced a net
OPG and receptor activator of NFKB ligand increase in RANKL expression and in osteo-
(RANKL). Binding of RANKL to the osteoclast clastogenesis that was inhibited by addition of
precursor-expressed RANK initiates a cascade soluble RANK [Pearse et al., 2001]. The produc-
of intracellular signals that culminates in the tion of active soluble RANKL by prostate cancer
acquisition and activation of the osteoclast cells in vitro has been implicated as a mechan-
phenotype [Lacey et al., 1998; Yasuda et al., ism through which prostate cancer cells can
1998a]. The absolute requirement of this inter- directly initiate osteoclastogenesis and there-
action for osteoclastogenesis was shown by fore stimulate bone resorption [Zhang et al.,
the generation of transgenic rankl -/- and 2001].
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Several exciting and provocative studies have and perhaps may prevent establishment and
examined the therapeutic uses of soluble RANK progression of bone metastases.
and OPG in the treatment of hematological and
solid tumors in bone. As a fusion protein with A MODEL FOR PROSTATE CANCER'S
human IgG, RANK has proven efficacious in the
inhibition of bone resorption in a mouse model
of humoral hypercalcemia of malignancy as From these observations, we propose a model
induced by PTHrP administration [Oyajobi for how prostate cancer cells influence bone
et al., 2001], and in the prevention of mye- remodeling. In order to account the apparently
loma-induced osteoclastic bone destruction in a contrasting ability of prostate cancer cells to be
SCID-human model [Pearse et al., 2001]. both pro-osteoblastic and pro-osteolytic several
In vitro experiments treating osteoclastoma- aspects of the metastases need to be taken into
derived cells with OPG reduced the number of account. These include the bone microenviron-
mature osteoclasts and inhibited bone resorp- ment the tumor cells are exposed to (reviewed in
tion [Atkins et al., 2001]. Dramatic decreases in Cooper et al., 2003) and the temporal progres-
the numbers of mature osteoclasts and in the sion of the cancer. Based on these parameters,
size and/or number of lesions in bone were we propose (Fig. 1) that when prostate cancer
observed following the treatment with OPG cells metastasize to bone, they initially induce
of mice carrying human breast cancer cells osteoclastogenesis and bone resorption. As bone
[Morony et al., 2001], murine multiple myeloma is broken down, the extracellular matrix
[Croucher et al., 2001], and human prostate releases a variety of growth factors (reviewed
cancer cells [Zhang et al., 2001]. In human in Guise and Mundy, 1998 #8470) that act in a
prostate cancer cells, OPG has been shown to be paracrine fashion on the prostate tumor cells
a survival factor through its ability to inhibit and diminish their ability to induce osteoclas-
TRAIL-mediated apoptosis [Holen et al., 2002]. togenesis, while promoting their ability to grow
Importantly, treatment with OPG has also been and induce osteoblastic activity. This model is
demonstrated to block pain-related behavior in consistent with various observations including
mice carrying bone cancers [Honore et al., 2000; the ability of anti-osteoclastogenic agents to
Luger et al., 2001]. Overall, these studies inhibit establishment of tumor in bone and the
suggest that in bone metastatic tumors, inhibi- mixture of osteolytic and osteoblastic features
tion of the primary resorptive stage may be identified in clinical prostate cancer bone
sufficient to inhibit tumor establishment and metastases, even within one patient. Unfortu-
halt progression of disease, even in those tumors nately, proving this hypothesis is challenging
that have primarily an osteoblastic phenotype. for several reasons including that there are
However, one prostate cancer cell line, LAPC-9, currently no animal models that recapitulate
was demonstrated to not produce RANKL, but spontaneous clinical prostate cancer bone
rather produced OPG [Lee et al., 2003]. This cell metastases.
line produced osteoblastic tumor when injected The biology of prostate cancer bone metasta-
into mouse tibia. The osteoblastic tumors did sis has received increased attention in the last
not appear to have osteoclastic activity during few years. The resulting data point to a
their early development phase, but developed complicated system with multiple interacting
osteoclastic activity by 6 weeks. These results proteins and pathways. Thus, while dissecting
bring into question the requirement for osteo- individual protein factor pathways (e.g., BMPs)
clastic activity for the initial establishment of is important, eventually a synthesis of how
the prostate tumors in bone. Further support for these various pathways work together to impact
this possibility was the observation that a bone remodeling will be necessary to provide a
bisphosphonate, zoledronic acid, did not dimi- comprehensive understanding of the biology of
nish development of LAPC-9 cells injected into prostate cancer bone metastases. Along this line
the tibia of mice; whereas it did decrease of thought, clearly the bone microenvironment,
development of osteolytic PC-3 cells [Lee et al., which is under constant change from the
2002]. While studies are at an early stage at influence of tumor cells, plays a role in the
present, it appears that therapeutic targeting of establishment and progression of prostate can-
the OPG/RANKL/RANK proteins holds great cer bone metastases. Thus, future studies are
promise for at least therapy of bone metastases needed to define the complex cross-talk between
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Fig. 1. Model for how prostate cancer induces bone remodel- production of osteoblastic factors (3) resulting in production of
ing. The prostate cancer cells initially (1) induce osteoclastogen- woven bone. BMP, bone morphogenetic protein; CaP, prostate
esis and resorption of mature lamellarbone. Asthe bone matrix is cancer cell; ET-1, endothelin-1; IL-6, interleukin-6; RANKL,
destroyed, it releases growth factors (2) that induce prostate receptor activator of NFKB ligand; TGF-J, transforming growth
cancer cells' growth and alter their phenotype. The changing factor 0.
bone microenvironment, enhances the prostate cancer cells'

the bone microenvironment and the prostate Atkins GJ, Haynes DR, Graves SE, Evdokiou A, Hay S,
cancer cells. In order to reach these goals, Bouralexis S, Findlay DM. 2000. Expression of osteoclast

development of appropriate research tools, such differentiation signals by stromal elements of giant cell
tumors. J Bone Miner Res 15:640-649.

as animal models and cells lines, that recapitu- Atkins GJ, Bouralexis S, Haynes DR, Graves SE, Geary

late human prostate cancer bone metastasis SM, Evdokiou A, Zannettino AC, Hay S, Findlay DM.

biology, are needed to advance the field. 2001. Osteoprotegerin inhibits osteoclast formation and
bone resorbing activity in giant cell tumors of bone. Bone
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